1,631 research outputs found

    Particle-Filter-Based Intelligent Video Surveillance System

    Get PDF
    In this study, an intelligent video surveillance (IVS) system is designed based on the particle filter. The designed IVS system can gather the information of the number of persons in the area and hot spots of the area. At first, the Gaussian mixture background model is utilized to detect moving objects by background subtraction. The moving object appearing in the margin of the video frame is considered as a new person. Then, a new particle filter is assigned to track the new person when it is detected. A particle filter is canceled when the corresponding tracked person leaves the video frame. Moreover, the Kalman filter is utilized to estimate the position of the person when the person is occluded. Information of the number of persons in the area and hot spots is gathered by tracking persons in the video frame. Finally, a user interface is designed to feedback the gathered information to users of the IVS system. By applying the proposed IVS system, the load of security guards can be reduced. Moreover, by hot spot analysis, the business operator can understand customer habits to plan the traffic flow and adjust the product placement for improving customer experience

    Kinematic Basis of Emergent Energetics of Complex Dynamics

    Full text link
    Stochastic kinematic description of a complex dynamics is shown to dictate an energetic and thermodynamic structure. An energy function φ(x)\varphi(x) emerges as the limit of the generalized, nonequilibrium free energy of a Markovian dynamics with vanishing fluctuations. In terms of the ∇φ\nabla\varphi and its orthogonal field γ(x)⊥∇φ\gamma(x)\perp\nabla\varphi, a general vector field b(x)b(x) can be decomposed into −D(x)∇φ+γ-D(x)\nabla\varphi+\gamma, where ∇⋅(ω(x)γ(x))=\nabla\cdot\big(\omega(x)\gamma(x)\big)= −∇ωD(x)∇φ-\nabla\omega D(x)\nabla\varphi. The matrix D(x)D(x) and scalar ω(x)\omega(x), two additional characteristics to the b(x)b(x) alone, represent the local geometry and density of states intrinsic to the statistical motion in the state space at xx. φ(x)\varphi(x) and ω(x)\omega(x) are interpreted as the emergent energy and degeneracy of the motion, with an energy balance equation dφ(x(t))/dt=γD−1γ−bD−1bd\varphi(x(t))/dt=\gamma D^{-1}\gamma-bD^{-1}b, reflecting the geometrical ∥D∇φ∥2+∥γ∥2=∥b∥2\|D\nabla\varphi\|^2+\|\gamma\|^2=\|b\|^2. The partition function employed in statistical mechanics and J. W. Gibbs' method of ensemble change naturally arise; a fluctuation-dissipation theorem is established via the two leading-order asymptotics of entropy production as ϵ→0\epsilon\to 0. The present theory provides a mathematical basis for P. W. Anderson's emergent behavior in the hierarchical structure of complexity science.Comment: 7 page

    Turnover Premium, Foreign Institutional Ownership, and Time-Varying Risk Premium in Taiwan Equity Markets

    Get PDF
    The low turnover premium found in U.S. equity markets is also found in Taiwan market, unlike the mixed evidence for other stylized effects such as size, book-to-market ratio and momentum. Consistent with investor overconfidence hypothesis proposed by Odean (1998, 1999), the percentage of foreign institutional shareholdings in a stock is found to vary inversely with turnover premium. This inverse relation is robust to the influence of other forces that may interact with turnover rate, such as market capitalization, book-to-market ratio and 6-month past returns, respectively. Time-varying risk premium, particularly in low turnover-low foreign institutional shareholdings percentage portfolio, provides partial explanation for the phenomenon, but the inverse relation persists after risk adjustment by models such as unconditional CAPM, Fama-French three factor model and conditional CAPM

    A New Sum-of-Squares Design Framework for Robust Control of Polynomial Fuzzy Systems With Uncertainties

    Get PDF
    This paper presents a new sum-of-squares (SOS, for brevity) design framework for robust control of polynomial fuzzy systems with uncertainties. Two kinds of robust stabilization conditions are derived in terms of SOS. One is global SOS robust stabilization conditions that guarantee the global and asymptotical stability of polynomial fuzzy control systems. The other is semiglobal SOS robust stabilization conditions. The latter is available for very complicated systems that are difficult to guarantee the global and asymptotical stability of polynomial fuzzy control systems. The main feature of all the SOS robust stabilization conditions derived in this paper are to be expressed as nonconvex formulations with respect to polynomial Lyapunov function parameters and polynomial feedback gains. Since a typical transformation from nonconvex SOS design conditions to convex SOS design conditions often results in some conservative issues, the new design framework presented in this paper gives key ideas to avoid the conservative issues. The first key idea is that we directly solve nonconvex SOS design conditions without applying the typical transformation. The second key idea is that we bring a so-called copositivity concept. These ideas provide some advantages in addition to relaxations. To solve our SOS robust stabilization conditions efficiently, we introduce a gradient algorithm formulated as a minimizing optimization problem of the upper bound of the time derivative of an SOS polynomial that can be regarded as a candidate of polynomial Lyapunov functions. Three design examples are provided to illustrate the validity and applicability of the proposed design framework. The examples demonstrate advantages of our new SOS design framework for the existing linear matrix inequality approaches and the existing convex SOS approach

    An SOS-Based Control Lyapunov Function Design for Polynomial Fuzzy Control of Nonlinear Systems

    Get PDF
    This paper deals with a sum-of-squares (SOS)-based control Lyapunov function (CLF) design for polynomial fuzzy control of nonlinear systems. The design starts with exactly replacing (smooth) nonlinear systems dynamics with polynomial fuzzy models, which are known as universal approximators. Next, global stabilization conditions represented in terms of SOS are provided in the framework of the CLF design, i.e., a stabilizing controller with nonparallel distributed compensation form is explicitly designed by applying Sontag\u27s control law, once a CLF for a given nonlinear system is constructed. Furthermore, semiglobal stabilization conditions on operation domains are derived in the same fashion as in the global stabilization conditions. Both global and semiglobal stabilization problems are formulated as SOS optimization problems, which reduce to numerical feasibility problems. Five design examples are given to show the effectiveness of our proposed approach over the existing linear matrix inequality and SOS approaches

    Structural insights into the gating of DNA passage by the topoisomerase II DNA-gate.

    Get PDF
    Type IIA topoisomerases (Top2s) manipulate the handedness of DNA crossovers by introducing a transient and protein-linked double-strand break in one DNA duplex, termed the DNA-gate, whose opening allows another DNA segment to be transported through to change the DNA topology. Despite the central importance of this gate-opening event to Top2 function, the DNA-gate in all reported structures of Top2-DNA complexes is in the closed state. Here we present the crystal structure of a human Top2 DNA-gate in an open conformation, which not only reveals structural characteristics of its DNA-conducting path, but also uncovers unexpected yet functionally significant conformational changes associated with gate-opening. This structure further implicates Top2's preference for a left-handed DNA braid and allows the construction of a model representing the initial entry of another DNA duplex into the DNA-gate. Steered molecular dynamics calculations suggests the Top2-catalyzed DNA passage may be achieved by a rocker-switch-type movement of the DNA-gate
    • …
    corecore